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The characteristic polynomial of a structure (molecule or a graph) is usually 
expressed as a function of x. Here  we explore an alternative representat ion 
of characteristic polynomials expressed in terms of L,, the characteristic 
polynomials of linear chains having n atoms. While the new forms of the 
characteristic polynomials are mathematical ly equivalent to the old forms, 
they appear  to reflect selected structural similarities among homologous 
molecules better. Besides arriving at general expressions for the form of the 
characteristic polynomials for numerous families of compounds previously 
unavailable, the approach is of some interest for the old problem of graph 
isomorphism and graph recognition in cases of structures which can be 
associated with a homologous series. 
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1. Introduction 

The characteristic polynomial  of a graph, defined as ( - ) n  det (A-xI), A being 
the adjacency matrix of a graph and I the unit matrix of the same dimension, 
is an important  structural invariant. At one time it was expected that the 
characteristic polynomial characterizes the graph, that is, that two graphs are 
isomorphic if and only if the characteristic polynomials of their adjacency matrices 
are the same [1]. However ,  as Collatz and Sinogowitz had shown [2], in a paper  
on!y more  recently widely cited, there are numerous instances of isospectral 
graphs, graphs which are nonisomorphic,  yet have all eigenvalues identical, hence 
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identical characteristic polynomials. While this fact opened the topic of isospectral 
graphs [3], it considerably reduced interest in the characteristic polynomial as 
a descriptor of structures. The characteristic polynomials are still of much interest, 
not in the area of chemical documentation, rather as a source of information on 
a structure. The coefficients of the characteristic polynomial are related to count 
of random walks and self returning walks, count of non-adjacent numbers and 
even count of cycles [4]. K6nig was first to relate elements of the expansion of 
a determinant to selected subgraphs and thus open the way to graph theoretical 
evaluations of a determinant [5]. In 1950 Coulson illustrated how the coefficients 
of the secular determinant (for a Hiickel MO-type calculations) can be evaluated 
by counting selected subgraphs of a molecular graph [6]. Pictorial expansion of 
the characteristic polynomial was later outlined by Spialter [7] and a systematic 
approach was offered by Sachs [8]. The general expression for the coefficients 
of the characteristic polynomial is elegant: they are given as a combination of 
subgraphs constructed from disjoint lines or cycles. However, already in case of 
structures having a dozen atoms the number of combinatorial possibilities that 
ought to be counted is too large, and application of the theorem becomes 
impractical. More recently a number of simplifying modifications have been 
suggested, such as contraction of a graph by suitable weighting factors assigned 
to bonds and vertices [9], use of a composition principle [10], and pruning of 
terminal bonds [11] or terminal fragments [12] and thus reducing the size of 
graphs dramatically. Finally, it was proposed to seek fewer but larger fragments 
as components for the construction of the characteristic polynomial [13]. This 
offsets the explosive increase in the number of combinations to be considered 
when individual bonds and cycles are used as components instead. In order to 
keep the number of distinctive components small, the characteristic polynomials 
of trees (i.e., acyclic graphs) were all expressed in terms of the characteristic 
polynomials of linear chains of different length. In one of his earlier work on 
Hiickel MO Heilbronner [14] considered linear chains and derived recurrent 
expression for the chains and for the cycles, in terms of the chains, but these 
served only as auxiliary expressions, the tabulated characteristic polynomials 
were all expressed in terms of x i powers. Here we will explore use of L,~(x) 
polynomials, which are the characteristic polynomials for chains of length n and 
express characteristic polynomials of other structures in terms of Ln. In particular 
we will (1) consider larger acyclic structures; (2) consider numerous cyclic 
structures with pending bonds; and (3) extend the application to families of 
structurally related graphs. Mathematically the two forms of the characteristic 
polynomial, one expressed in powers of x and the other expressed in terms of 
Ln polynomials, are equivalent. As will be seen, the latter forms, on comparison 
of structurally related systems, show more visibly the similarities and therefore 
open a route to general expression for the characteristic polynomial for a family 
of structurally related molecules. Explicit forms for Ln(x) have already been 
reported by Collatz and Sinogowitz: 

[n/2] (F/ --/~) n-2m 
L~(x)= Z (-11 ~ x 

,~=o m 
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and can be found tabulated for n = 1,20 in a review article by Trinajstid [15] on 
construction of characteristic polynomials. L,(x) are in fact Chebyshev poly- 
nomials in x/2, usually labeled as T, (x/2). 

2. Acyclic Structures 

Since the characteristic polynomials for acyclic graphs are known [16] one can 
derive the equivalent forms expressed in terms of Ln by first expressing various 
powers of x in terms of L~ and then make a straightforward substitution. For 

Table 1. Charac te r i s t i c  po lynomia l s  of C9 i somers  expres sed  as a 

l inear  comb ina t i on  of po lynomia l s  L .  

I s o m e r  Charac te r i s t i c  

po lynomia l  

n - n o n a n e  

2 - m e t h y l o c t a n e  

3 - m e t h y l o c t a n e  

4 - m e t h y l o c t a n e  

3 - e t h y l h e p t a n e  

4 - e t h y l h e p t a n e  

2 , 6 - d i m e t h y l h e p t a n e  

2 , 5 - d i m e t h y l h e p t a n e  

2 , 4 - d i m e t h y l h e p t a n e  

3 , 5 - d i m e t h y l h e p t a n e  

2 , 3 - d i m e t h y l h e p t a n e  

2 - m e t h y l - 4 - e t h y l h e x a n e  

3 , 4 - d i m e t h y l h e p t a n e  

2 -me thy l  -3 - e t hy lhexane  

3 - m e t h y l - 4 - e t h y l h e x a n e  

2 , 2 - d y m e t h y l h e p t a n e  

2 , 3 , 5 - t r i m e t h y l h e x a n e  

3 , 3 - t r i m e t h y l h e p t a n e  

2 , 3 , 4 - t r i m e t h y l h e x a n e  

4 , 4 - d i m e t h y l h e p t a n e  

2 , 4 - d i m e t h y l - 3 - e t h y l h e x a n e  

3 - m e t h y l - 3 - e t h y l h e x a n e  

3 , 3 - d i e t h y l p e n t a n e  

2 , 2 , 5 - t r i m e t h y l h e x a n e  

2 , 2 , 4 - t r i m e t h y l h e x a n e  

2 , 4 , 4 - t r i m e t h y l h e x a n e  

2 , 2 , 3 - t r i m e t h y l h e x a n e  

2 , 3 , 3 - t r i m e t h y l h e x a n e  
2 , 2 - d i m e t h y l - 3 - e t h y l p e n t a n e  

3 , 3 , 4 - t r i m e t h y l h e x a n e  
2 , 3 - d i m e t h y l - 3 - e t h y l p e n t a n e  
2 , 2 , 3 , 4 - t e t r a m e t h y l p e n t a n e  

2 , 3 , 3 , 4 - t e t r a m e t h y l p e n t a n e  

2 , 2 , 4 , 4 - t e t r a m e t h y l p e n t a n e  

2 , 2 , 3 , 3 - t e t r a m e t h y l p e n t a n e  

L9 
L9-Ls 
L9-L5 -L3 
L9-Ls-L3-L1 
L9-Ls-2L3-L1 
L9-Ls-2L3-2L~ 
L9-2Ls+L1 
L9-2Ls-L3+L1 
L9-2Ls-L3-L  1 
L 9 -  2L5 - 2L3 
L9-2Ls-2L3 -L1 
same 

L9 - 2L5 - 3L3 - 2La 

L9 - 2L5 - 3L3 - 3L1 

L 9 - 2L5 - 4L3 - 3L 

L 9 -  3L5 - 2L3 
same  

L9-3L5 - 4 L 3  - 2 L 1  
same 

Lg-3Ls-4L3 -4L1 
same 

L9 - 3L5 - 6L3 - 5L 1 

L9-3L5 -8L3 -7LI 
L9 - 4L5 - 2L3 + 3L1 
L9-4Ls-  3L3 + L1 
L9-4L5 - 4 L 3  - L a  

L 9 - 4 L 5  - 5L3 - 3L~ 

L9 - 4L5 - 6L3 - 5L l 
s ame  

L9-4Ls-7L3-5L1 
L 9 - 4L5 - 8L3 - 7L l 
L9 - 5L5 - 6L3 - 2L 1 
t 9 - 5L5 - 8L3 - 6L1 

L9 - 6L5 - 4L3 + 5L 1 
L 9 - 6 L 5  - 1 0 L 3 - 7 L 1  
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example from: 

La=x 
Lz=x2-1 
L3 = x 3 _ 2x etc., 

one  immediately obtains: 

x = L 1  
x 2 = L 2 + l  

x 3 = L 3 + 2 L ~  and so on. 

In Table 1 we give the characteristic polynomials  for isomers of nonane C9H20. 
Some regularities can be seen already by inspection of the Table 1. The coefficient 
of L5 is reflecting the number and type of substitution of the main chain: - 1  
for methyl  group; - 2  for dimethyl substitution at two different carbon atoms or 
similar methyl-ethyl  substitution; - 3  for dimethyl substitution on a same carbon 
atom and methyl-ethyl  substitution on a same carbon atom; - 4  for disubstituted 
carbon atoms and another substituted carbon atom; - 5  for tetramethyl sub- 
stituted pentane one  carbon atom having double substitution, and finally - 6  for 
tetramethyl substituted pentane with two atoms having double substitution. It 
is more difficult to discern regularities in other coefficients, primarily because 
the skeletal forms for isomers are so diverse. It seems therefore better to consider 
families of structurally related skeletal forms. In Table 2 we have collected 

Table 2. Characteristic polynomials for selected families of branched alkanes expressed as 
function of L~ and as function of x" 

L 4 - 1  
L5 - L 1  
L 6 - L 2  
L 7 - L 3  
L8 - L4 
L 9 - L  5 
L I o - L  6 

L l l  - L 7  

L12 - L 8  

L a - L 2 - 1  

L T - L 3 - L 1  
L8 - L 4  - L 2  
L 9 - L 5  - L 3  
L l o - L 6 - L 4  
L l l - L 7 - L  5 
L12 - L 8 - L 6  

X4--3X 2 
5 

x -4x3+2x 
x 6 - 5 x 4  + 5x 2 

7 x - 6 x S + 9 x a - 2 x  
8 x - 7 x 6 +  1 4 x 4 - 7 x  2 

x 9 -  8x7 + 20xS-16x3  + 2x 
x l ~  9x8 + 2 7 x 6 -  30x4 + 9x 2 
x 11 _ lOx9+35x7_50xS+25x3_2x  
x 12 _ 1 l x  1~ 44x 8 - 77x6 + 55x 4 -  l l x  2 

X6-- 5X4 + 5X2--1 
7 x --6X5+9X3--3X 

x S - - 7 X 6 +  14X 4 - 8 x 2 +  1 

X9--8X 7 +20x 5-17x 3 +4x 
x l o _  9x 8 + 27x 6 _ 3 l x  4 + 12x ~ - 1 

11 x - l O x g + 3 5 x 7 - 5 1 x S + 2 9 x 3 - 5 x  
12 x - l l x l ~  
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Table 2---continued 
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L 7 - L a - 2 L 1  
L8 - L4 - 2L2-  I 
L 9 - L s - 2 L a - L 1  
L l o - L 6 - 2 L 4 - L 2  
L , 1 - L 7 -  2Ls -L3  
L 1 2 - L 8 - 2 L 6 - L 4  

Ls -3L1  
L 6 - 3 L 2 - 2  
L 7 - 3 L 3 - 2 L 1  
L 8 -  3L4-  2L2 
L g - 3 L s - 2 L 3  
L so - 3L6 - 2L4 
L n  -3LT-2L5  
L a2- 3 L s -  2L6 

L 6 -  2L2-1  
L7 - 2L3 
L8 - 2L4 + 1 
L9-2Ls+L1 
Llo-2La+L2 
L n - 2 L 7 + L 3  
L12- 2Ls + L4 

L7 - 2L3 - 2/_. 1 

xT-6xS +9xa-4x  
xS-7x6+  14x~- 9x2 + 1 
x9-8x7  + 20xS-18x3 + 5x 
x 10_ 9x8 + 27X6- 32x 4 + 14x2-1 
xa1-10xg + 35x7- 52x5 + 32xa-6x 
x a2 - l lx1~ 4-17x2+ 1 

xS -4x  ~ 
x 6 -  Sxa + 3x 2 
x7-6xS + 7x 3 

xS-7x6  +12x4- 3x a 
X 9 -- 8X 8 "}- 25X 6 -- 22X 4 + 3X 2 
xlO--9XS + 25X6-- 22X4 + 3X 2 

11 x - lOx9+33x7-40xS+13x 3 
12 x - l l xX~  2 

L8 - 2L4-  2L2 - 1 
L9-2L5 -2L3 -L1  
L a o - 2 L 6 - 2 L 4 - L 2  
Lll  - 2L7-  2L5 -L3  
L n -  2L8-  2L6 - L4 

x6-5x4  +4x 2 
x7_6xS + 8x 3 
x 8_7x6+ 13x4-4x 2 
x9_8xT+ 19x 5-12x 3 
x l~  + 26x6- 25x4 +4x 2 
x 11 _ lOx9+34x7+44x 5 - 16x 3 
x 12_ l lx l~  8_70x6+41x4_4x 2 

xT-6xS +8x3-2x  
x S -  7x6 +13x4-6x 2 
x9-8x7+  19x 5 - 14x~ + 2x 
x l~  + 26xa- 27x4 + 8x 2 
x lX-  loxg + 34x7-46xS + 22x3- 2x 
x i 2  l lxtO+43xS_72x6+49x 4_lOx 2 

c h a r a c t e r i s t i c  p o l y n o m i a l s  e x p r e s s e d  in t e r m s  of  x e a n d  L ,  f o r  a n u m b e r  of  

f ami l i e s  of  s i m p l y  r e l a t e d  s t r u c t u r e s .  T h e  first  is t h e  f a m i l y  of  2 - m e t h y l  s u b s t i t u t e d  

a l k a n e s .  A l t h o u g h  in th is  ca se  t h e  f o r m s  of  t h e  c h a r a c t e r i s t i c  p o l y n o m i a l  s h o w  

a r e g u l a r i t y ,  t h e  e q u i v a l e n t  e x p r e s s i o n s  in t e r m s  of  L ,  a r e  m o r e  s i m p l e r .  W i t h  
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Table 3. General  expressions for the characteristic polynomials for 
branched alkanes of Table 2. The  last column shows the smallest size of 
graph for which the expression holds 

Substitution General  expression nmin 

2-methyl  L,, - Ln -4 4 
3-methyl L,~ - L n - 4 -  L n - 6  6 

3-ethyl L .  - Ln-4 - 2L._6 - -  Ln_s 8 
2,2-dimethyl Ln - 3L._4 - 2L._6 6 
2,(n - 1)-dimethyl L .  - 2 L . _ 4 + L .  8 8 
2,3-dimethyl L,~ - 2L,~_,s-  2 L n _ 6 -  L,~ s 8 

two substitutents and even with a single substitutent but at position 3 the 
characteristic polynomials become more involved and it takes more members 
of the family in order to discern the patterns for the coefficients. Nevertheless, 
when the characteristic polynomials are expressed in terms of Ln the resulting 
expressions are much simpler and allow one to write general expression already 

Table 4. Families of structures in which branching occurs at the center  and their characteristic 
polynomials. Linear and nonlinear  expression for the characteristic polynomial in terms of Ln are 
shown 

L 4 - 1  
L 6 - L 2 - 1  
L s - L 4 - L 2 - 1  

L l o - L 6 - L 4 - L 2 -  1 

L s - 3 L 1  

L T - 3 L 3 - 4 L 1  

L g - 3 L s - 4 L 3  - 4 L 1  

L l l - 3 L v - 4 L s - 4 L 3 - 4 L a  

L6 - 2L2  - 1 

L8 - 2L4 - 3 L z  - 1 

L l o -  2 L 6 -  3L4 - 3 L 2 - 1  
L~2 - 2L8 - 3 L 6 -  3L4 - 3 L 2 - 1  

L 1 L 3 - ( L 1 )  2 

L1L5  - (L2) 2 

or L1L7  - (L3) 2 

L 1L9-  (L4) 2 

L I ( L I L 3  - 2(L1) 2) 
L I ( L 1 L 5  - 2(Lz) 2) 

or  L l ( L 1 L v _ 2 ( L 3 ) 2 )  

L 1 (L 1 L 9  - 2(L4) 2) 

( L O Z L 4 -  L 1 L a ( L x  - 1) 
( L 1 ) 2 L a - L a L 3 ( L a  - 1) 

or (L1)2Ls-L3L4(L1 - 1) 
( L I ) 2 L 1 o -  L 4 L s ( L 1  - 1) 
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Table 5. A family of structures with branching at every vertex (except terminal) 
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L 4 - 1  x n -  3x  2 

L 6 -  2 L 2 - 1  x 6 -  5x 4 +4x  2 
L8 - 3 L ~ -  3L2 - 1 x 8 - 7 x 6 +  12x4-  4x 2 
LlO-4L6 - 5 L 4 -  2L2 x 10 _ 9x 8 + 24x 6_ 20x  4 + 4x  2 

after deriving first few members. In Table 3 we have summarized the recurrent 
relations for the families of compounds considered in Table 2. 

For the compounds of Table 2 the substitution sites are near one of the ends of 
the main chain, thus as the size of the graph increases more and more prominent 
is the "chain" as the dominant part of the structure. It is therefore not suprising 
to find that Chebishev polynomials in form of Ln (x) play important role. If the 
site of the substitution is not at ends of the chains, but rather somewhere in the 
middle, one can nevertheless in number of cases recognize the pattern in the 
expressions for the characteristic polynomials and derive a general expression. 
As illustrated in Table 4 with selected families of compounds the expressions 
for the characteristic polynomials in the form of L ,  components has now a 
somewhat more complex appearance. We have, in addition to the forms which 
are linear in Ln, also shown alternative expressions based on nonlinear terms 
which better  portray the regularities within such families. Non-linear terms can 
be transformed into linear ones by repeated use of pertinent recurrent  relations. 

Finally, if one consider a family of compounds, such as one shown in Table 5, 
in which all sites are substituted, not suprisingly, the form of the characteristic 
polynomial as a function of Ln is becoming more involved and many members 
of the family need to be considered before one can discern correct pattern in 
the coefficients of various L ,  terms. 

3. Cyclic Structures 

The same approach can be applied to cyclic and polycyclic structures. In Table 
6 we have listed the characteristic polynomials expressed in terms of L~ for all 
monocyclic compounds having n = 6 and less vertices. Similarly in Table 7 and 
Table 8 results for families of structures are given: members differ by the length 
of the exocyclic chain and members differ by the size of the ring respectively. 
With a cycle a compound can correspond to bipartite or nonbipartite type and 
this is reflected in the parity of the components Ln. For bipartite graphs all terms 
have either even or odd subscript, depending on the number of vertices. It is of 
interest to compare the new forms for the characteristic polynomials as function 
of Ln and old forms as function of x ". In Table 7 comparison is made for 
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Table 6. Monocyclic structures having six or less a toms and their characteristic polynomials as function 
of L~ 

n = 3  

A x 3 - 3 x  - 2  

L 3 - L 1 - 2  

n = 4  

X4_4x2 
L 4 - L 2 - 2  

n = 5  

xS-  5x3 + 5x - 2 
Ls-L3 -2  

x - 5 x  ~ - 2 x 2 + 4 x + 2  

Ls-L3+2L2-L1 

x -5x3-2x2+3x 
Ls -L3+2L2-2Ll+2 

�9 

L 6 - L 4 - 2  

L 6 - L 4 - 3 L 2 - 1  

L 6 - L 4 - 4 L 2 - 3  

L6 -Ls+2L3-L  2 

L6-L4+2L3-2Lz+2Ll -1  

L6-L4+2L3-3L2+2L1-2 

x4-4x2-2x  +1 

L4-L2+2Ll -1  

xS_5x3+2 x 
Ls -L3-3L1  

xS_5x3 2x2+2 x 
L s - L a - 2 L 2 - 3 L 1 - 2  

+ 

A. 

L6-L4-L2+2L1 

L 6 - L 4 - 4 L 2 - 2  

L 6 - L 4 - 5 L 2 - 3  

L6 - L5 + 2L3 - 2L2 

L6 - L4 + 2L3 - 3L2 + 4Lx - 2 

L6-L4+2L3-4L2+4L1-2 
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Table 7, Characteristic polynomials for selected cyclic structures with pending 
linear chains (Initial members characteristic polynomials expressed as func- 
tion of x n can be found in: K. Kawasaki, K. Mizutani and H. Hosoya, Nat. 
Sci. Report Ochanomizu University 22, 181 (1971), the higher polynomials 
were derived using recently outlined algorithm [20]) 

L 4 - L 2 - 2 L l - 1  
L s - L 3 - 2 L 2 - L x  
L6 - L4 - 2L3 - L2 
L T - L s - 2 L 4 - L 3  

x4 -4x2-  2x + 1 
xS-5x3-2x2+4x +2 
x6-6x4-  2xa + 8x2 + 4x - 1 
x7-  7xS- 2x4 + 13x3 +6x2- 5x +2 

L s -  La-  3L1 x5-  5x3 + 2x 
L6-  L4-  3L 2-1 x6-6x4 +6x 2 
L7-  L s -  3L3 - L1 x7-  7xS + l l x3 -  2x 
L s -  L6-  3L4-L2 x 8 - 8 x 6 + 1 7 x 4 - 8 x  2 

structures with a chain attached to a ring. The simplicity of expressions based 
on Ln is here very pronounced. One can immediately write down the next line, 
the characteristic polynomial for the next member in the family as function of 
Ln. To figure out correctly the coefficients of the characteristic polynomials for 
successive members of both families shown in Table 7 is not trivial and requires 
information on several additional members of the family in order to make sure 
that the suspected pattern is correct one. 

The results in Table 8 illustrate the effects of gradual increase of the ring size. 
Observe that in the considered cases there is a constant contribution of 2L2 + 2 
or - 2 L 2 - 2  and a variable part which changes with change of the ring size. In 
summary, we see that the simplifications introduced with Ln as terms for express- 
ing the characteristic polynomials of acyclic structures also extends to cyclic 
structures. Hence, although mathematically equivalent the new forms deserve 
more attention because they allow a more direct interpretation of algebra and 
topology of a structure. 
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Table 8. Examples of families of structures with rings of increasing size and their 
characteristic polynomials 
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L s -  L 3 -  3L1-  2L2-2  
L 6 -  L4 - 3L2 - 1 - 2L2 - 2 
L 7 -  L s -  3 L 3 - L 1 -  2L2-  2 
L s -  L 6 -  3L4-  L 2 -  2L2-  2 
L 9 -  L 7 -  3Ls+ L 3 -  2L2-  2 

L s - L 3 - 2 L 1 - 2 L 2 - 2  
L 6 - L 4 - 2 L 2 -  1 - 2 L a -  2 

L T - L s - 2 L 3 - L 1 - 2 L 2 - 2  
L s -  L 6 -  2L4-  L 2 -  2 L z -  2 
L 9 - L  T-  2 L s -  L 3 -  2L2-  2 

L 6 - L 4 - 2 L a - 2 L 3  
L7 - Ls  - 2L3 - L 1 - 2L3 

L s -  L 6 -  2L4-  L 2 - 1 -  2L 3 
L 9 - L 7 - 2 L s - L 3 - L 1 - 2 L 3  
L l o - L 8 - 2 L 6 - L 4 - L 2 - 2 L 3  
L l a - L 9 - 2 L T - L s - L a - 2 L 3  
L i e -  L a o -  2 L s - L 6 -  L 4 -  2L3 

4. On the Problem of Recognition 

The problem of graph recognition - which we here distinguish from the problem 
of graph isomorphism- we define as the problem of identifying a given single 
structure as a structure previously recorded or assumed known. Consider for 
example the diagrams in Fig. 1. It is not difficult to recognize the top row as 
graphs representing a cube, but the last two diagrams (the bottom row) require 
some analysis and verifications before they are recognized as graphs representing 
the connectivity of a cube. By assuming a graph as "familiar" we understand 
that several of its properties are known to us, and when an "unknown" graph 
shows same properties we may suspect isomorphism, test it for isomorphism, 
and if confirmed, claim the graph being "recognized". Graph isomorphism is 
concerned with establishing whether or not two given graphs have identical 
connectivity. It is known that the graph isomorphism problem is difficult [19] 
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Fig. 1. Alternative forms for graph depicting the connectivity of a cube 

and is still the subject of considerable interest [20]. The graph recognition 
problem as defined here may appear straightforward t a s k -  all one has to do is 
screen the files until coincidence occurs. This assumes some unique names have 
been deviced for structures, but difficulties are known when size of structures 
increases and when one allows even more general graphs, graphs not necessarily 
representing molecular skeletons to be considered. Even if one succeed in 
prescribing unique labels and names for graphs, such as based on canonical 
numbering of vertices [21], searching large files may not be the most efficient 
way of retrieval of "known" information. Most significantly one sometimes 
"recognizes" a novel structure, not previously considered at all, on the basis of 
its relation to some simpler structures. For example the first time that graph of 
a four-dimensional cube has been recognized as such was clearly accomplished 
by "analogy" with ordinary cube and its properties in three-dimensional space. 
Hence, the process of recognition has besides searching a memory also a heuristic 
component.  Many structures and objects are recognized because related simpler 
structures have appeared elsewhere previoulsy. In the case of the four 
dimensional cube we observe that the number of vertices has doubled and that 
the structure can be viewed as two interconnected cubes. So, for recognition of 
graphs, it appears that local properties are of interest. Graph spectra reflects 
some local structural features, if nodal properties of graphs are closely examined 
[22]. Since spectra and characteristic polynomial are intimately connected one 
anticipates that characteristic polynomial, although global, may reflect some 
local structural features and thus offer a tool for graph recognition as here 
defined. Let 's  illustrate the spirit of the approach. The question to consider is 
as follows: given the characteristic polynomail, what can be said about the 
associated structure [23]? Clearly one cannot in general reconstruct the graph 
from the polynomial, since the latter is not unique. However  we contend that 
some partial information can be extracted and in some cases even the structure 
can be recovered. For example consider 2-methyl substituted alkanes, the charac- 
teristic polynomial of which has the form Ch(Gn)=Ln-L.-4. If one compares 
the structures and polynomials one sees that (n - 4 )  indicates the length of the 
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terminal chain, by defining the "end"  group as having the four atoms as in the 
first structure of the family (isopropane). Similarly, in the case of 3-methyl 
substituted alkanes, the general expression Ch (G,) -- L ,  - L~_4-  L,_6, the length 
of the chain in successive members of the family, is given by n - 6. Quite generally, 
if one comes across a polynomial the last term of which is not constant, one can 
relate the structure to a simpler one with k bridging vertices if the end term 
was Lk. The vertices need not be part of the end chain, but could, as in the case 
of alkanes with substituents on both ends, be inserted in between. One practical 
benefit of such considerations is that if one is constructing a file of structures of 
interest, one need only include a few initial members of a family. These would 
suffice for all members by use of the general term as a key for recognition. In 
using the characteristic polynomial for graph recognition, one has to be constantly 
aware that occurance of isospectral graphs may result in detecting only one such 
structure. For instance the polynomials L~-3Ln_g-2L~_6 belong to 2,2- 
dimethyl substituted alkanes, and when n = 9 is specified, it will locate 2,2- 
dimethylheptane, but the characteristic polynomial L 9 - 3 L 5 - 2 L 3  also belongs 
to its isospectral pair: 2,3,5-trimethylhexane. The latter, however is not the 
member of this family. Equally, one can consider 2,3,5-trimethylhexane as a 
member of another family. One can select 2,3,5-trisubstituted alkanes or alterna- 
tively consider 2,3 substitutions and third substituent at n -  1 position. The 
general terms for these families will produce 2,3,5-trimethylhexane without 
indicating that the graph may have an isospectral partner. Clearly, isospectral 
graphs appear as the intersection of two families. 

Hence, it appears that if one can associate a structure with a family of compounds 
one might have unique characterization of the structure by its characteristic 
polynomial, if the polynomial is derived from a general expression for all members 
of the family. This raises hopes that the characteristic polynomial, which can be 
replaced by more readily available eigenvalues, can offer the basis and assist 
one in resolving even the problem of graph isomorphism, not alone, of course, 
but combined with the information for series of homologous compounds, of 
which the structure in question is member. Application of such an approach 
raises several interesting questions. Can two graphs with terminal chains (i.e., 
having at least chains with two vertices) and which are isospectral, produce 
isospectral pairs by reduction of the chain length? The number of known 
isospectral graphs has increased since 1957, when Collatz and Sinogowitz repor- 
ted first such cases [2] and the results are scattered that it is not easy to make 
a comprehensive verification with the respect to posed question even for the 
graphs reported in the literature. But as long as one can associate a structure 
with a single family, the members of which increase in size and therefore cannot 
generate isospectrality within the family, one anticipate that it will be possible 
to distinguish between isospectral structures using the "characteristic polynomial 
for the family" and specifying its member. By considering families, rather than 
individual members we in fact can prune or shorten pending fragments or bridges, 
and if graphs are nonisomorphic and belong to different families, such prunings 
or abridgments will disclose differences among the families clearly. It is outside 
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the scope of this presentation to elaborate and investigate possible complications 
(if they arise). Here we wanted only to draw attention to the characteristic 
polynomial as a useful graph invariant, potential of which has not been exhausted. 
In particular we would like to point to its use in the problem of graph recognition 
and even graph isomorphism. We do this to refute the view that.the characteristic 
polynomials as a tool for such task failed, because it could not resolve the 
problem in a single step. Because a scheme initially doesnot work it should not 
be abandoned unless we fully understand why it fails and find it beyond possible 
remedy. In case of isospectral graphs much progress has been made, but we still 
do not know all possible structural factors that cause their occurence and thus 
cannot completely characterize them. After a proper characterization of isospec- 
trality one may expect characterization of general structures in terms of charac- 
teristic polynomial and closely related concepts. Advantages of characteristic 
polynomial for characterization (partial so far) is its conceptual simplicity. 
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